Physiological loading of tendons induces scleraxis expression in epitenon fibroblasts.

نویسندگان

  • Christopher L Mendias
  • Jonathan P Gumucio
  • Konstantin I Bakhurin
  • Evan B Lynch
  • Susan V Brooks
چکیده

Scleraxis is a basic helix-loop-helix transcription factor that plays a central role in promoting fibroblast proliferation and matrix synthesis during the embryonic development of tendons. Mice with a targeted inactivation of scleraxis (Scx(-/-)) fail to properly form limb tendons, but the role that scleraxis has in regulating the growth and adaptation of tendons of adult organisms is unknown. To determine if scleraxis expression changes in response to a physiological growth stimulus to tendons, we subjected adult mice that express green fluorescent protein (GFP) under the control of the scleraxis promoter (ScxGFP) to a 6-week-treadmill training program designed to induce adaptive growth in Achilles tendons. Age matched sedentary ScxGFP mice were used as controls. Scleraxis expression was sparsely observed in the epitenon region of sedentary mice, but in response to treadmill training, scleraxis was robustly expressed in fibroblasts that appeared to be emerging from the epitenon and migrating into the superficial regions of tendon fascicles. Treadmill training also led to an increase in scleraxis, tenomodulin, and type I collagen gene expression as measured by qPCR. These results suggest that in addition to regulating the embryonic formation of limb tendons, scleraxis also appears to play an important role in the adaptation of adult tendons to physiological loading.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergist ablation induces rapid tendon growth through the synthesis of a neotendon matrix.

Mechanical loading can increase tendon cross-sectional area (CSA), but the mechanisms by which this occurs are largely unknown. To gain a greater understanding of the cellular mechanisms of adult tendon growth in response to mechanical loading, we used a synergist ablation model whereby a tenectomy of the Achilles tendon was performed to induce growth of the synergist plantaris tendon. We hypot...

متن کامل

Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis.

INTRODUCTION Transforming growth factor-beta (TGF-β) is a well-known regulator of fibrosis and inflammation in many tissues. During embryonic development, TGF-β signaling induces expression of the transcription factor scleraxis, which promotes fibroblast proliferation and collagen synthesis in tendons. In skeletal muscle, TGF-β has been shown to induce atrophy and fibrosis, but the effect of TG...

متن کامل

Mechanical loading and TGF-β change the expression of multiple miRNAs in tendon fibroblasts.

Tendons link skeletal muscles to bones and are important components of the musculoskeletal system. There has been much interest in the role of microRNA (miRNA) in the regulation of musculoskeletal tissues to mechanical loading, inactivity, and disease, but it was unknown whether miRNA is involved in the adaptation of tendons to mechanical loading. We hypothesized that mechanical loading and tra...

متن کامل

Rat Achilles tendon healing: mechanical loading and gene expression.

Injured tendons require mechanical tension for optimal healing, but it is unclear which genes are upregulated and responsible for this effect. We unloaded one Achilles tendon in rats by Botox injections in the calf muscles. The tendon was then transected and left to heal. We studied mechanical properties of the tendon calluses, as well as mRNA expression, and compared them with loaded controls....

متن کامل

Tendons of myostatin-deficient mice are small, brittle, and hypocellular.

Tendons play a significant role in the modulation of forces transmitted between bones and skeletal muscles and consequently protect muscle fibers from contraction-induced, or high-strain, injuries. Myostatin (GDF-8) is a negative regulator of muscle mass. Inhibition of myostatin not only increases the mass and maximum isometric force of muscles, but also increases the susceptibility of muscle f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of orthopaedic research : official publication of the Orthopaedic Research Society

دوره 30 4  شماره 

صفحات  -

تاریخ انتشار 2012